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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI ut.its of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By
acre-feet 1,233.489
cubic feet 0.02831685
Fahrenheit degrees 5/9
feet 0.3048
miles (US statute) 1.609347
square feet 0.09290304

To Obtain

cubic metres
cubic metres

Celsius degrees
or kelvins*

metres
kilometres

square metres

* To obtain Celsius (C) temperature readings from Fahrenheit (F) readings,
use the following formula: C = (5/9)(F - 32). To obtain Kelvin (K)

readings, use: K = (5/9)(F - 32) + 273.15.




WATER QUALITY MODELING STUDY OF PROPOSED REREGULATION DAM DOWNSTREAM
FROM BUFQORD DAM, CHATTAHOOCHEE RIVER, GEORGIA

PART I: INTRODUCTION

Background

1. The Metropolitan Atlanta Area Water Resources Management Study
(MAAWRMS) (1981), sponsored by the US Army Engineer District, Savannah (SAS),
addressed alternative methods of providing water to the Atlanta area to meet
the region's water supply needs well into the twenty-first century. Alter-
natives considered included construction of a reregulation (rereg) dam
6.3 miles* below Buford Dam, reallocation of storage at Lake Sidney Lanier,
and dredging of Morgan Falls Reservoir in conjunction with storage realloca-
tion at Lake Sidney Lanier. The MAAWRMS Study Group recommended the rereg dam
as the best alternative.

2. The MAAWRMS Executive Group also recommended studies to predict
water quality changes (resulting from reregulation) in the Chattahoochee River
between Buford Dam and Peachtree Creek. In particular, they voiced concerns
about minimizing damage to the existing trout fishery. These concerns were
defined with the following water quality criteria:

a. Water temperatures in excess of 23.3° C (74° F) at Peachtree
Creek should never be allowed to occur.

b. Water temperatures in excess of 18.8° C (66° F) at Peachtree
Creek should not be allowed to occur at a greater frequency or
longer duration than is the case now.

c. Water temperatures at the hatchery intake should not be allowed
to exceed 18.3° C (65° F).
d. Three-day running averages of simulated water temperatures

associated with reregulation should not exceed those associated
with unreregulated water temperatures by 1.1° C (2° F).

e. Dissolved oxygen (DO) concentrations should be maintained above
5 mg/%.

f. Concentrations of dissolved iron or manganese should not exceed
1 mg/%.
These studies would also identify potential water quality problems related to

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 3.




the rereg dam which would adversely affect either the state trout hatchery or

the river trout fishery.

Objective

3. The purpose of this study was to provide predictions, through numer-
ical model simulations, of the proposed rereg dam's impact on selected water
quality parameters in the Chattahoochee River (Figure 1) between Buford Dam
(river mile 348.3) and Peachtree Creek (river mile 300.98).

Study Area

4. The study reach of the river currently has two dams, Buford Dam and
Morgan Falls Dam (Figure 1). Buford Dam impounds Lake Sidney Lanier, a large,
deep, multipurpose reservoir constructed and operated by SAS. One of its
purposes is peaking hydropower generation. The maximum discharge rate from
Buford Dam during peak power generation is about 8,400 cfs. A minimum flow of
approximately 550 c¢fs is maintained during off peak power periods to provide
present water supply and to maintain downstream water quality.

5. Morgan Falls Dam (river mile 312.62), a hydropower dam owned and
operated by the Georgia Power Company, impounds Bull Sluice Lake. Bull Sluice
Lake is a small, shallow, run-of-the-river impoundment that does not stratify
vertically. At normal power pool (el 853.6* msl), Morgan Falls Dam impounds
approximately 2,500 acre-ft with a maximum depth of 16.6 ft. Although Morgan
Falls Dam is operated for power production, its discharges largely reflect the
releases from Buford Dam because it has so little storage capacity.

6. As originally proposed, the rereg dam, which would be sited at river
mile 342.0, is designed to eliminate the need for minimum flow releases from
Buford Dam by storing the peaking discharges while providing a relatively
steady release to the Chattahoochee River. The minimum release from the rereg
dam would be approximately 1,500 cfs. At present, two design options are
under consideration; the first would impound a 1-day rereg water supply, while
the second would store enough water to sustain steady releases for 2.5 days.

* All elevations (el) cited herein are in feet referred to mean sea level
(msl).
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The 1-day water supply pool would fluctuate between el 912 and el 922, and
have a maximum depth of approximately 30 ft, with storage of 7,200 acre-ft.
The 2.5-day pool would vary between el 912 and el 92U, with a maximum depth of
32 ft and storage of 8,900 acre-ft. The primary reason for considering a
2.5-day water supply rereg dam is for its proposed use in hydropower genera-
tion; according to SAS, the benefit-cost ratio is significantly greater with
the rereg option.

7. The approach taken in this study was to consider existing and future
water supply needs as estimated in MAAWRMS (1981) and to apply a water quality
model to the reach from Buford Dam to Peachtree Creek. For each water supply
estimate, scenarios were developed which simulated required operations,
routings, and resulting water quality. Water quality differences among rereg
options and between unregulated and reregulated conditions were examined
extensively and in detail. The following sections of this study describe the
model, its calibration and confirmation, simulation conditions and results,

and conclusions.
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PART II: MODEL DESCRIPTION

Model Selection

8. A one-dimensional (1-D), riverine water quality model developed by
Bedford, Sykes, and Libicki (1982) was selected for the study. The highly
unsteady nature of flows in this system required application of an unsteady
flow model. A& cross-sectionally averaged, longitudinally 1-D model was con-
sidered appropriate for this river system which exhibits longitudinal changes
in water quality but is fairly well-mixed laterally and vertically. Longi-
tudinal gradients are also expected to be more important than vertical and
lateral gradients in the rereg pool because of the pool's shallowness, long
length, and short retention time. Likewise, Bull Sluice Lake experiences very
little vertical stratification and, thus, fits the 1-D assumption.

9. The Bedford model was chosen over other unsteady flow water quality
models for its capability to include in-stream hydraulic control structures
(i.e., the rereg dam and Morgan Falls Dam). Two submodels constitute the Bed-
ford code. The hydrodynamic code (RIV1H) simulates water movement within the
modeled system; this code can stand alone and simulates river flows, water-
surface elevations (stage), depths, cross-sectional areas, and top widths.

The water quality submodel (RIV1Q) requires output from RIVIH to drive the

transport algorithms for water quality simulations.

RIV1H Submodel

10. RIV1H, patterned after the National Weather Service Dambreak Model
(Fread 1978) uses the four-point, implicit, finite-difference method to solve
for flows and elevations. The advective term of the momentum equation is left
in nonlinear form; thus, a Newton-Raphson iteration is used to converge the
solution at each time step. The model permits relatively unequal space and
time steps. The model also allows simulation of branched river systems with
multiple hydraulic control structures.

11. RIVI1H requires river geometry descriptions and flow conditions to
perform the hydrodynamic calculations. The stretch or reach of the river
under study is broken into segments. Each segment is divided by a series of
nodes where river geometry (cross-sectional area and bed elevation) and

initial conditions are defined and where the model predicts hydrodynamic and




water quality conditions. River geometry data include locations ouf control
structures, distances between nodes, stream bed elevations, cross-sectional
area versus depth equation coefficients, and Manning's coefficients. Flow
conditions include initial flow rates and depths, lateral inflows or with-
drawals, and boundary conditions. Boundary conditions may be provided in
terms of flows, stages, or rating curves at control structures or boundaries.

12. Cross-sectional area and discharge are tha dependent variables of
the hydrodynamic equations. Following computation of these variables, stage,
depth, and width are determined. Time histories of all these variables can be
printed out for each node of the river model. Additionally, RIV1Q uses all of
these variables to calculate dynamic changes in concentrations of water

quality variables and temperature.

RIV1Q Submodel

13. After RIVIH computes hydraulic conditions, RIV1H output drives the
water quality transport predictions in RIV1Q. RIV1Q uses an explieit, finite-
difference method to solve the constituent transport/reaction equations. A
two point, fourth-order accurate scheme developed by Holly and Preissmann
(1978) provides highly accurate advective transport during the solution of
these equations.

14. RIVIQ was originally intended to simulate effects of wastewater or
pollutant loadings to riverine systems. The program could calculate up to
seven given water quality variables: temperature, dissolved oxygen (DO),
carbonaceous biochemical oxygen demand (CBOD), organic nitrogen, ammonia
nitrogen, nitrate nitrogen, and phosphate phosphorus, as well as a user-
selected variable, e.g., coliform bacteria or a chemical pollutant. Addition-
ally, the effects of phytoplankton and macrophyte growth and decay on nutrient
balances and DO were included.

15. For this study, the program was modified to include dissolved iron,
dissolved manganese, and coliform bacteria as modeled variables. Phytoplank-
ton and macrophytes were assumed light-limited only. A further modification
was the removal of turbulence as a factor directly influencing decay rates; a
first attempt to effect this removal left the model predicting oxygen deple-
tion at an unrealistically high rate; this oversight was subsequently

corrected.




16. A brief description of modeling considerations for the ten water
quality variables follows. While these variables and their effects are
included in this study, only temperature, DO, dissolved manganese, and dis-
solved iron are reported.

17. Temperature computations were modified by replacing the equilibrium
temperature method with a direct energy balance technique (Roesner, Giguere,
and Evanson 1977). The calculations incorporate effects of net short wave and
long wave radiation, back radiation, evaporative cooling, conduction, and
thermal loadings from inflow boundaries and lateral inputs. Meteorological
data requirements for calculating temperatures include dew point and dry bulb
temperatures, atmospheric pressure, wind speed, and cloud cover. Computed
temperatures affect reaction rates for other water quality constituents.

18. Computing the DO concentration is a primary focus of the model.
Reaeration and photosynthesis are sources of oxygen, while organic matter
decayv, nitrification, plant respiration, and oxidation of iron and manganese
deplete DO. Stream reaeration follows the Tsivoglou formulation (Tsivoglou
and Wallace 1972); structural reaeration through the rereg dam follows an
empirical relationship developed by Wilhelms and Smith (1981); and, in pools
above the rereg dam and Morgan Falls Dam, wind-driven reaeration (OQ'Connor
1983) has been incorporated into the model. Releases from Buford Dam, Morgan
Falls Dam, and the 2.5-day water supply rereg option are assumed not to
involve structural reaeration, as these are hydropower releases with little
energy left in the flow.

19. CBOD represents the amount of biodegradable organic matter present
in terms of oxygen equivalents required for its complete decay. Biodegradable
organic material may enter the system through lateral and boundary inflows.
Oxygen or nitrate can act as terminal electron acceptors for CBOD decay, de-
pending on half saturation constants used and concentrations of oxygen and
nitrate present; that is, oxygen or nitrate may be reduced in order to oxidize
the organic matter. The amount of oxygen reduced decreases, and the amount of
nitrate reduced increases, as DO approaches zero. CBOD removal, a first-order
process, does not occur in the absence of oxygen or nitrate.

20. Nitrogen occurs in three forms in the model--organic nitrogen,
ammonia nitrogen, and nitrate nitrogen, all of which may enter the system via
boundary inputs and lateral inflows. Organic nitrogen is a constituent of

organic matter, and the model converts organic nitrogen to ammonia through
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hydrolysis. Ammonia is derived from organic nitrogen and algal and macrophyte
decay, all first-order processes. Ammonia is lost from the system by nitri-
fication and uptake by plants, also first-order processes. Nitrate is formed
from ammonia by nitrification and removed by plant uptake and by denitrifica-
tion under low DO conditions.

21. Phosphate phosphorus is removed from the system by algal and macro-
phyte uptake and released to the system by plant decay. Phosphate may enter
the system via upstream boundary inflows or lateral inflows.

22. Dissolved iron and manganese may enter the system only through dam
releases or lateral inflows. When DO is greater than 1.0 mg/%, dissolved iron
and manganese are oxidized (first-order processes) and lost from the system.

23. In this application, fecal coliform bacteria enter the system only
through lateral inflows which represent agricultural or urban runoff or waste-
water return flows. Fecal coliform do not reproduce in the aerobic free
state, and their populations decay exponentially.




PART III: MODEL CALIBRATION AND CONFIRMATION

System Discretization

24, RIVIH, as used in this study, models the Chattahoochee River as a
series of two (without rereg dam) or three (with rereg dam) segments which are
bounded by control structures at their upstream ends. The final lower bound-
ary condition at Peachtree Creek is defined by a rating curve. The cross-
sectional area at each node is described by the equation A = C1 * H + C2
* H #* c3  where A 1is the cross-sectional area; H is the depth from the
stream bed to the water surface; and the C values are user-defined coeffi-
cients. The C values are fitted so the model's description closely approx-
imates the stream's cross-~sectional area versus depth profile. At any given
node, lateral inflows (streams and creeks) and withdrawals can te defined; the
net input or withdrawal is divided by the length of the reach between nodes
and is given as cubic feet per second-foot.

25. Two slightly, but significantly, different sets of geometric attri-
butes are presented in Tables | and 2. Table 1 describes how the river is
modeled without the rereg dam, and Table 2 contains the data used to simulate
the river with either the proposed 1- or 2.5-day water supply rereg dams in
place. (Descriptions of the flow regimes are provided later in Table 3.)
Without the rereg dam, the stretch of river is composed of two segments; the
first extends from Buford Dam to Morgan Falls Dam and contains 35 nodes. The
second segment runs from Morgan Falls to Peachtree Creek and has 15 nodes.
The rereg dam at river mile 342.0 (Table 2) divides the upper segment in two
parts, an upper part of 11 nodes and a lower part of 25 nodes. Thus, simu-
lations without reregulation have 50 nodes, while those with the rereg dam
have 51 nodes (one extra node being needed at the rereg dam). Much of the
physical data for the simulations are derived from previous studies, such as
Jobson and Keefer (1979), Faye and Cherry (1980), and Benedict (1980a), and
surveys performed by the US Army Engineer District, Mobile, and the US
Geological Survey (USGS).

26. The unreregulated and proposed reregulated systems obviously vary
physically around the rereg site. Differences in some geometric parameters
and Manning's coefficients, in particular, are necessary to simulate condi-

tions of the rereg pooi. For example, the cross-sectional area coefficients
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of the rereg pool must satisfy cross-sectional area requirements, and the
volume of the model rereg pool must closely approximate that of the prototype.
Additionally, Manning's coefficients decrease as the rereg pool depth in-
creases in the downstream direction.

27. A time step of 5 min was selected for all model simulations. With
the explicit scheme of RIVIQ and the highly dynamic flow with relatively large
flow rates during power generation, this small time step was required to main-

tain RIV1Q's numerical stability.

Model Calibration

Hydraulic calibration

28. Flow and stage calibration studies used USGS data from earlier
flow investigations between Buford Dam and the Georgia Highway 141 bridge
(river mile 330.76). Initial calibrations were conducted for a steady-state,
low flow release of 550 cfs from Buford Dam. Values for stage height along
the river during documented steady, low flow conditions on 17 July 1976
(Jobson and Keefer 1979) were compared with model predictions. Manning's n
values were adjusted where necessary to bring model stages in agreement with
those observed. Observations for most of the downstream reach were unavail-
able. Stage readings were available at two downstream nodes, the Atlanta
Water Works (river mile 300.98) and the Atlanta Gage (river mile 302.98).
Manning's n values for the downstream reach were adjusted to apprc—imate
values used upstream (i.e., high values for shoals and low values for pools).

29. The results of these calibrations are shown in Figure 2 as eleva-
tion versus river mile. Bed elevations and locations of each node are also
shown in the figure.

30. After completing the steady, low flow calibration, unsteady flow
simulations were initiated to test the adequacy of n values and model geom-
etry. Data available from studies conducted during 21-23 March 1976 (Faye and
Cherry 1980) provided the basis for unsteady flow comparisons. Lateral in-
flows were significant during this period, so estimates of these quantities
were required. By applying a weighted average based on drainage basin area,
Big Creek gaged flows were used to estimate all other ungaged inflows. Un-
steady flow comparisons revealed that several nodes (primarily in shoal areas)
required Manning's n values that varied from a high value at low stage to a

12




low value at high stage. Thus, a linear fit of the calibrated low and high
flow n values was developed and used for several nodes as noted in Tables 1
and 2 along with the n values. The n values closely approximate values ob-
tained by Jobson and Keefer (1979) during their flow simulations of the same
events (17-19 July 1976 and 21-23 March 1976). The steady and unsteady flow
calibrations allowed the development of a rating curve for the boundary con-
dition at the last node (Peachtree Creek). Figure 3 shows the results of the
unsteady flow calibration at five stations for the period 21-23 March 1976.

Mass transport

31. In addition to calibrating the model to simulate hydraulic condi-
tions accurately, transport of a conservative substance (dye) was modeled and
results were compared with observed steady and unsteady dye tracer studies.
These simulations tested the mass transport capability of RIV1Q before
attempting simulations of water quality.

32. A dye slug was introduced into the steady, low flow simulation, and
the locations and timing of the dye peak were determined from model output.
These results were compared with travel times reported by the USGS (1972) for
steady, low-flow tracer studies. This comparison (Figure 4) indicated that the
model reliably simulated the travel time of the system.

33. Unsteady flow field studies of 21-23 March 1976 included dye tracer
and temperature measurements (Jobson and Keefer 1979) in addition to stage re-
cordings. Dye was continuously released at a constant rate just below Buford
Dam. Dye concentrations were recorded at two downstream stations throughout
the unsteady flow event. The dye tracer was modeled by introducing a constant
source of a conservative constituent at the first node. The computed and
observed dye concentration histories at both downstream stations are shown in
Figure 5. The longitudinal dispersion coefficient used for these and all sub-
sequent simulations was 250 sq ft/sec. This value was estimated from the
relationship D = 250.0 * R * US , where D is the dispersion coefficient,

R the hydraulic radius, and US the shear velocity (Fischer 1973). Approxi-
mating the product R * US to equal 1.0 yielded a value of 250.0 for D .
This value gave good results, while smaller and larger values for D did not
improve the results shown in Figure 5. Very little numerical dispersion
occurred because of the high order of accuracy of the Holly-Preissmann (1978)
scheme. The favorable comparisons in Figures 4 and 5 confirmed the ability of

the model to simulate mass transport.

13
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Thermal conditions

34. Meteorological data for simulating lLemperature were obtained from
the National Oceanic and Atmospheric Administration (NOAA) and represent ac-
tual conditions experienced at the Atlanta airport weather station during the
time period studied. The parameters used in the model included dew point and
dry bulb temperatures, atmospheric pressure, wind speed, and cloud cover.
These data were available at hourly intervals; thus, hourly updates of meteor-
ological data were used for all simulations.

35. After evaluating model mass transport, RIVIQ's ability to model
temperature was tested. Temperature data taken at three locations by the USGS
(1972) along with Morgan Falls operations records obtained from the Georgia
Power Company for the period 21-23 March 1976, provided the basis for the
simulations, supplementing information in Jobson and Keefer (1979) and Faye
and Cherry (1980). Lateral inflow temperatures were approximated with the
mean of the March monthly averaged equilibrium temperatures (Edinger and Geyer
1965) as calculated by Benedict (1980b). Results of this simulation (Fig-

ure 6) compared favorably with observed conditions.

Model Confirmation

36. The validity of model predictions resulting from the calibration
was tested by simulating flow and temperature for 12-19 July 1976 and by com-
paring these simulations with stage and temperature recordings at the Atlanta
Gage. The Atlanta Gage and Buford Dam discharge, stage, and temperature re-
cordings were provided by the USGS office (1972), Doraville, GA. Data were
not available at any other locations between Buford Dam and the Atlanta Gage
for this period (except for the steady, low-flow stage readings on 17 July
1976 as discussed previously). The Georgia Power Company provided Morgan
Falls Dam discharge data. Appropriate meteorological data were obtained from
NOAA weather data (Atlanta airport). The mean value for the monthly (July)
averaged equilibrium temperature, in this case modified for shading (Benedict
1980b), was used for the lateral inflow temperature. Simulated and observed
stages and temperatures at the Atlanta Gage (river mile 302.96), compared in
Figures 7 and 8, proved quite satisfactory (predicted values within about
1.0° C of observed most of the time; predicted minus observed mean error

= -0.15° C, root mean square error = 1,22° C); the majority of discrepancies
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resulted from estimating initial conditions.

37. Existing data are insufficient to confirm the model's ability to
simulate other water quality variables as they change with time. However,
monthly water quality sampling data yielded a range of autumn values at four
sampling sites (water supply intakes) for DO, CBOD, ammonia nitrogen, and
nitrate nitrogen (Figure 9). These observations provided an approximate means
of checking the model's adequacy. Fall conditions were selected because of
the occurrence of low DO and reduced chemical species in the tailwater. Sim-
ulated values for these four water quality variables generally fell within
the range of field observations; the simulated average DO value at river
mile 325.44 exceeded the observed range. Several ungaged, unsimulated, minor
tributaries located upstream may have contributed to this deviation. Alter-
natively, the extreme meteorological conditions used in the simulation may not
have reflected conditions during the period for which field data were avail-
able. It is also possible that the stream reaeration equation overpredicted
the rate of reaeration in the reach between the first and third observation
stations. Some model coefficients were varied in an attempt to bring model DO
closer to observtion, but the model was relatively insensitive to these varia-
tions below the upper 12 miles.
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PART IV: SIMULATION CONDITIONS

Overview

38. Simulation conditions in this study represented the critical sea-
sonal periods of summer and fall (referred to as July and October). Within
this framework, numerous scenarios exemplifying a variety of flow regimes with
and without a rereg dam in place were tested. We also considered rereg op-
tions with and without hydropower. Table 3 contains a brief description of
the alternatives examined and a descriptor for referencing the alternative
throughout this study. Various facets of the simulation conditions, such as
seasonal conditions, meteorology, flow regimes, and water quality conditions,

are discussed below.

Seasonal Periods

39. Water quality conditions in the Chattahoochee River are the most
stressful during midsummer and fall. The month of July (midsummer) generally
exhibits the warmest atmospheric temperatures along with high solar radiation
and can be expected to cause the highest water temperatures. A review of tem-
perature records at the Atlanta Water Works supports this assumption. In
October and November, water quality of releases from Buford Dam is poorest in
terms of high temperatures, low concentrations of DO, and high concentrations
of undesirable, oxygen-demanding, dissolved materials (ammonia, manganese, and
iron). July water temperatures and October DO concentrations are particularly
critical for the river's trout fishery. Therefore, midsummer and fall are
used for the seasonal simulation conditions.

40. An 8-day time period was chosen as a basis for both summer and fall
simulations for the following reasons. First, a full week and a day were more
than enough time for the rereg dam to influence the entire reach; potentially
unrealistic initial conditions in the system were eliminated by reinitializing
each simulation with simulation output taken after 168 hr (Monday, 1 week
after starting). Second, an 8-day period included the week days and the week-
end, with their particular routings. Third, application of the unsteady flow
models, RIV1H and RIV1Q, became increasingly expensive for longer simulation

periods, and the benefits of longer simulation periods (such as weeks or
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months) did not warrant the additional costs. Longer simulation periods are

practical for simpler routing methods and steady-state riverine models, but,
for this study, results would not be as accurate as with a dynamic routing

model.

Meteorological Conditions

41, To select reasonable, yet relatively stressful meteorological con-
ditions, historical meteorological data were analyzed to determine conditions
that are exceeded about once every 10 ye-'rs. It was first assumed that daily
average air temperatures were good indicators of warm, cool, ete., meteoro-
logical conditions. Daily average air temperatures were computed for each day
in the months of July, October, and November from NOAA data records (Atlanta
airport) covering the time period from 1945-1982. Next, 3-day running aver-
ages of these daily average air temperatures were computed and, for each year
of record, the maximum 3-day running average of air temperature, 3T, was
determined for the months considered (July or October-November). Three-day
averages were used because the average hydraulic retention time of the system
for present conditions is about three days. At this point, it was possible to
construct an exceedance frequency table for the 3T data and determine the 3T10
for July or October-November. The 3T10 is defined as the 3T that for a given
month is expected to occur or be exceeded every 10 years. For this study, the
3T10 was determined only for July and October-November, the two time periods
of interest. With the 3T10 information, meteorological data were directly
examined and the 8-day time period which contained the particular 3T10 was
selected. For July, this was 24-31 July 1949; and, for October-November, it
actually ran from 30 September-7 October 1955. The meteorological data for
these time periods were used for the summer (referred to as July) and fall

(referred to as October) simulation conditions, respectively.

Flow Regimes

42, According to projections, present flow conditions will not satisfy
future water supply needs. Therefore, since some operation modifications
will be made, it might seem unnecessary to compare future water quality con-
ditions, as affected by the insertion of a rereg dam at river mile 342.0 on
the Chattahoochee River, with existing conditions without the dam. However,

in order to compare effects of modifications, this study compares water
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quality in the unreregulated system with rereg dam alternatives for present
and future water needs. The future alternative without reregulation (Plan B),
as presented here, would require reallocation of storage in Lake Sidney
Lanier.

43. Operation regimes for the modeled systems with and without the
rereg dam were provided by SAS. These routings were calculated with the HEC-5
Simulation of Flood Control and Conservation Systems program using estimated
needs for withdrawals by municipal water supply intakes. The Georgia Depart-
ment of Natural Resources (DNR) provided lateral inflow rates from creeks.

44y, Figure 9 presents discharge scenarios without the rereg dam in
place (Modified Interim Plan (MIP) and Plan B), and Figure 10 shows five dif-
ferent rereg flow regimes. Table 3 describes all operations in more detail.
These figures include hydrographs at Buford Dam, Morgan Falls Dam, and the
proposed rereg dam. All simulations start on Monday morning and run through
2400 hr on the following Monday.

45, Under MIP, which represents existing conditions, Buford Dam
discharges for 2 hr per day at 8,400 cfs, and Morgan Falls Dam releases a
steady flow of about 1,054 cfs. Plan B (future conditions without reregu-
lation) would have Buford Dam releasing 5,000 cfs for 5 hr per day and Morgan
Falls Dam releasing daily peaking flows. Both the MIP and Plan B options
maintain minimum releases of 600 cfs from Buford Dam during off-peak periods.

46. This study examines five-flow regimes (Figure 10) incorporating
rereg dam operations. Other than obvious differences caused by inclusion
of the rereg discharges, several changes in operations should be noted.
Inclusion of a rereg dam on the Chattahoochee River could eliminate the need
for minimum releases from Buford Dam; however, the alternate 1- and 2.5-day
rereg options, intended to maintain low temperature outflows from Buford Dam,
use 600-cfs minimum flows, and the basic 2.5-day water supply option requires
several hours of 600 cfs flow early Monday morning to maintain a wet channel
below Buford Dam. The three 1-day water supply rereg options (basic 1 day,
alternate 1 day, and Morgan Falls Steady Flow (MFSF)) require weekend
hydropower generation at Buford Dam, while the 2.5-day options do not. With
the exceptions of minor adjustments to water-surface elevations on Fridays
under the basic 1- and 2.5-day water supply options, release flows from the
rereg dam remain constant. The MFSF option does not have peaking flows at
Morgan Falls Dam as do the four other options.
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Initial Water Quality Conditions

47. Starting water quality conditions were determined by running the
model through a trial simulation and, then, reinitializing, using predicted
water quality values after 168 simulation hours (Monday morning) as initial
conditions. Earlier testing indicated that unrealistiec, transient stream
water quality values would result during the first two simulation days unless
good starting values were selected. It was impossible to start with observed
field values or estimates because such detailed data were unavailable for the

periods of interest.

Water Quality Boundary Conditions

48, Concentrations of water quality variables change with release rate
from Buford Dam because the vertical thickness of the withdrawal zone in the
Lanier pool depends on discharge rate. With penstock intakes deep in the
Lanier pool, discharge through them creates a withdrawal zone predominately in
the lower portion of the pool. The smaller the discharge, the more concen-
trated is the withdrawal zone near the bottom of the reservoir. For larger
discharges, the centroid of the withdrawal zone is higher in the pool. Be-
cause concentrations of dissolved iron and manganese increase and DO and
temperature decrease with depth in Lake Sidney Lanier, small discharges (such
as 600-cfs minimum flows) from Buford Dam have higher release concentrations
of metals and nutrients and lower temperatures and concentrations of DO.
Larger discharges result in warmer releases with higher DO concentrations and
lower dissolved metal and nutrient concentrations.

49, Estimates of Buford Dam release temperatures and DO concentrations
were obtained from SAM records from a continuous monitor located in the Buford
Dam tailrace. Records for July, October, and November 1971-1977 were used to
make estimates of high flow and low flow values of temperature and DO for mid-
summer and fall (referred to as October) conditions (Table 4). These values
could be characterized as typical rather than extreme.

50. October and November historical field data are combined to obtain
estimates of fall release water quality parameters. Estimates for release
flow nutrient concentrations and CBOD (Table 4), obtained from Willey and Huff
(1978), compare favorably with stream data samples collected near the Gwinnett
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County water intake (river mile 338.0) by the Georgia DNR (1973-1981). Addi-
tional field measurements taken in fall 1984 by SAS substantiate the values
.r. used. Estimates of release concentrations of dissolved iron and manganese
(Table 4) are from a letter from the USGS* and Georgia DNR data (from 1980).
51. Concentrations of water quality constituents must be specified for
the lateral inflows (tributaries). RIV1Q assigns the same inflow concentra-
h tions to all lateral inflows within a given segment. Therefore, concentration
! estimates were obtained for each of the three segments (two segments without
the rereg dam) using a flow weighted average for the tributaries within a
given segment. Estimates of chemical concentrations for the tributaries were
obtained from Willey and Huff (1978). Lateral inflow temperature was assumed

to be approximated by the monthly average equilibrium temperature (Edinger and
Geyer 1965) modified for shading. Average and extreme values of monthly aver-
age, modified, equilibrium temperatures on the Chattahoochee River were devel-
oped by Benedict (1980b). Averages of the extreme and average monthly values
for July and October-November were used in the model to characterize thermally
stressful lateral inflow conditions. Lateral inflow concentrations of DO were
assumed to be at saturation values with respect to lateral inflow tempera-
tures. Lateral inflow concentrations used for all simulations are shown in
Table 5. When the rereg dam was not included in a simulation, segment 2 was
the upstream segment; thus, only the second and third values shown in Table 5

were used for a given constituent.

Rate Coefficients

52. Most rate coefficients (Table 6) and/or guidance in determining
them were reported by Miller and Jennings (1979), Willey and Huff (1978),
Bedford, Sykes, and Libicki (1982), and Roesner, Giguere, and Evanson (1977).
Manganese and iron oxidation rates were determined by examining iron and man-

ganese concentrations measured by the USGS* at multiple river stations just

below Buford Dam. Knowing changes in concentration over distance, distance
between stations, and flows made it possible to estimate travel times and,

thence, oxidation rates in the river.

] * US Geological Survey. 1978. Water Quality Data, Chattahoochee River,
P 1977. Letter of 15 Feb 1978 transmitted by the US Geological Survey,
Doraville, GA, to US Army Engineer District, Mobile, Mobile, AL.
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PART V: SIMULATION RESULTS

General Considerations

53. Results of numerous simulations are presented to consider effects
of a proposed rereg dam on water quality during the months of July and October
and under current and future water supply needs and routings. Two specific
nodes were selected as sites for making comparisons of results. The first
corresponds to the location of the intake for the trout hatchery (river
mile 346.8). This site was chosen because of concerns voiced about quality
of water supplied to the trout hatchery and potential extra treatment costs;
the site is also important as it lies in the rereg pool. The second node
selected, Peachtree Creek, the last model node, represents the terminus of
this environmentally sensitive reach of the Chattahoochee River where several
targets and objectives are specified by MAAWRMS (1981). In addition to 8-day
time history plots of water quality parameters at the two nodes, average con-
centrations for each 8-day simulation are plotted along the river, allowing
examination of changes with distance.

54, Results of certain simulations prove quite similar. Therefore,
this study does not present all scenarios in the same detail; only figures
depicting average values may appear for some projected operations. Omitting
some of the results makes it easier to focus on flow regimes that result in
significant differences in water quality conditions.

55. Results appear as a series of plots depicting water quality condi-
tions for various operational alternatives for both July and October simula-
tions. Only results for temperature, DO, iron, and manganese are shown as
they are the water quality parameters which may create problem conditions with
the addition of the rereg dam.

Basic 1-Day Rereg Versus MFSF

56. As shown previously, the 1-day rereg and the MFSF options have
quite similar flow regimes (Figure 10); the only major difference is between
unsteady and steady releases at Morgan Falls Dam. Likewise, water quality
predictions are almost identical; temperatures rise from about 11° C at Buford
Dam to about 20° C in July and from about 14° C to about 18° C in October
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(Figures 11 and 12). Variations in other water quality parameters appear

undifferentiable.

Hydropower Versus Nonhydropower Rereg Dam Options

57. The original concept for a basic 1-day water supply rereg dam below
Buford Dam does not consider incorportion of hydropower; as stated earlier,
the basic 2.5-day water supply rereg dam is proposed as a hydropower option.
Additional simulations consider the effects on water quality of a 2.5-day
rereg dam without hydropower and a 1-day rereg dam with hydropower. Compari-
sons are made between both 1- and 2.5-day hydropower options and between both
1- and 2.5-day nonhydropower options. Modifying simulation conditions to per-
form these additional tests is rather simple; one need only include or delete
structural reaeration at the rereg dam to eliminate or simulate, respectively,
the hydropower option. Hydropower or nonhydropower alternatives do not change
flow regimes for either the 1- or the 2.5-day rereg options.

58. Figures 13 and 14 compare July and October simulations for hydro-
power generation with either dam alternative. Average water temperatures
differ slightly near the downstream boundary (less than 0.5° C in July and
October); otherwise, temperature simulations appear nearly identical to each
other and to the previous simulations. DO, dissolved iron, and manganese
concentrations also appear quite similar, although the upstream DO averages
are unlike the previous figures because of the absence of structural reaera-
tion at the rereg dam.

59. Likewise, comparing the nonhydropower options for either dam
alternative reveals no differences other than the same minor average water
temperature deviations (Figures 15 and 16). The jump in DO of about 2 mg/%
due to structural reaeration at the rereg dam is apparent.

60. These results enable the use of the basic 1-day rereg (nonhydro-
power) and the basic 2.5-day rereg (hydropower) options as examples in further
comparisons, since significant water quality differences occur between the
hydropower and nonhydropower alternatives and not between the pools of dif-
ferent storage capacities studied here. These differences, caused by reaera-
tion in the nonhydropower options, are discussed in following sections.
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Basic 2.5-Day Rereg Versus Alternate 2.5-Day Rereg

61. Another operational alternative to the basic 2.5-day water supply
rereg option (0-cfs minimum flow) considers the effects of maintaining minimum
releases of 600 cfs from Buford Dam (alternate 2.5-day rereg). Figures 17 and
18 compare average July and October water auality simulations derived from the
basic and alternate 2.5-day rereg operations.

62. Average values for July simulations (Figure 17) indicate that tem-
peratures and DO concentrations are generally lower (about 1° C and less than
1 mg/%, respectively) with the alternative option; average temperature plots
converge below Morgan Falls Dam. Upstream DO concentrations are somewhat
lower due to the 600-cfs minimum flows. Dissolved iron and manganese concen-
trations are similar and very low in July.

63. October temperature and DO averages (Figure 18) diverge slightly
more than those for July. Temperature differences gersist below Morgan Falls;
DO differences, greater at the outset, converge about the same location as in
July. Plots of dissolved iron and manganese concentrations, higher in the
rereg pool under the 600-cfs minimum flow alternative, nevertheless, converge
before passing through the rereg dam.

64. 1In July, at the trout hatchery (Figure 19), the 600-cfs low flows
drive the temperature below 10° C and DO concentrations toward 5 mg/%. Dis-
solved iron and manganese remain low Juring this period. At Peachtree Creek
(Figure 20), little difference can be found between the two simulations.

65. In October, minimum flow releases of 600 cfs cause the DO to fall
below 2.0 mg/% (for aproximately two full days during the weekend) at the
trout hatchery (Figure 21). With O-cfs minimum flow, DO remains around
4 mg/e. Dissolved manganese, rising to about 0.5 mg/%, and dissolved iron,
rising to about 1 mg/%, are also somewhat higher as a result of the 600-cfs
releases. Temperature, DO, dissolved iron and manganese values at Peachtree
Creek (Figure 22) are comparable during the 8-day simulation period under the

two flow regimes.

MIP Versus Three Reregulation Options

66. Three rereg options stand out as examples of how different rereg

and operational alternatives can affect water quality simulations; these are
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the basic 1-day water supply rereg option, the alternate 1-day water supply
modification (600-cfs minimum flow), and the basic 2.5-day water supply option
(hydropower rereg). This section compares these options with the MIP unrereg-
ulated flow (current needs; existing, authorized operations) alternative.

67. Figure 23 shows differences in average simulated July water quality
conditions between the MIP unreregulated flow and three rereg operational al-
ternatives. Roughly speaking, the MIP alternative sustains the lowest average
temperatures, followed, in order, by the alternate 1-day water supply option,
the 2.5-day rereg, and the 1-day rereg. The alternate 1-day water supply op-
tion produces temparatures averaging about 0.5 ° C (1° F) less than the other
rereg options. Average DO values all exceed 5 mg/f. Significant differences
exist in the vicinity of the proposed rereg site; DO concentrations with the
basic 1-day rereg or alternate 1-day options jump 2 to 2.5 mg/% as a result of
structural reaeration during passage through the dam, while the MIP and the
2.5-day rereg options experience only stream or wind reaeration in this area.
Dissolved iron and manganese concentrations remain low and continually decline
moving downstream.

68. Figures 24 and 25 demonstrate dynamic changes in water quality
variables during the 8-day July simulation period at the trout hatchery and
Peachtree Creek. Water quality at the trout hatchery (Figure 24) closely fol-
lows that in releases from Buford Dam. Dailv hydropower generation flows
cause the water quality variables to exh_bit cyclical changes. Low flows of
600 cfs from Buford Dam associa.ed with the MIP and alternate 1-day water sup-
ply operations (and Monday morning low flows with the 2.5-~day rereg option)
drive the temperature below 10.0° C (50° F) because of the deep, cool hypolim-
netic waters released; the 1- and 2.5-day rereg options have 0-cfs minimum
flows. During periods of high release flows, temperatures are identical. The
only other significant temperature effect is the weekend rise in temperature
associated with the 2.5-day rereg option which has no weekend hydropower gen-
eration at Buford Dam. Highest temperatures at the trout hatchery in July do
not exceed 13.0° C (55° F). DO concentratic.s at the trout hatchery are
greater than 5.0 mg/% for all four simulations, with the MIP consistently the
highest and the alternate 1-day water supply option falling toward 5.0 mg/%
with low flows. Pulsing manganese and iron concentrations are always low
during July.

69. At Peachtree Creek (Figure 25), simulated water temperatures for
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July tend to stay at or above 18.8° C (66° F); they never exceed 23.3° C

(74° F). DO concentrations remain above 9.0 mg/%, and dissolved iron and
manganese are negligible. Daily oscillations in temperature and DO primarily
result from solar heating and photosynthesis, respectively.

70. In October (Figure 26), average water quality parameters follow
similar trends to those in July; temperature and DO generally increase down-
stream, and dissolved iron and manganese decrease. Although the average water
temperature of October Buford Dam releases (approximately 13.8° C (57° F)) is
higher than those of July, the rate of temperature increase is lower, and
average temperatures do not exceed 18.8° C (66° F). Average DO concentrations
in the rereg pool (or upstream of the rereg site in the MIP simulation) are
generally less than 5.0 mg/¢. In the 1- and 2.5-day rereg options, average DO
exceeds 5.u mg/% before release from the rereg dam. MIP and alternate 1-day
water supply options with low-flow releases of hypolimnetic water (DO = 1.0
mg/%) remain low above river mile 342 (in the rereg pool). Passage through
the rereg dam reaerates the water in the basic 1-day and alternate 1-day water
supply option simulations. Average dissolved iron and manganese concentra-
tions for the MIP option are higher than any rereg option. In the alternate
1-day water supply option simulation, average dissolved iron and manganese
concentrations are relatively high in the rereg pool but approach the averages
for the basic 1- and 2.5-day rereg simulations below the dam.

71. At the trout hatchery in October (Figure 27), all temperatures
remain well below the 18.3° C (65° F) criterion, with the 1- and 2.5-day rereg
temperatures most stable; while low flows associated with the MIP and alter-
nate 1-day water supply simulations lower temperatures. For the most part, DO
concentrations stay below 5.0 mg/%; the 600-cfs minimum flows in the alternate
1-day water supply simulation drive DO toward 2.0 mg/f. Dissolved iron and
dissolved manganese concentrations in the four simulations vary considerably
with the MIP option generating concentrations of 0.75 mg/% dissolved iron and
1.4 mg/4 manganese; the alternate 1-day water supply option produces the sec-
ond highest levels of dissolved iron and manganese. Low flow releases of the
alternate 1-day water supply and MIP options drive the concentrations up daily
and on Monday mornings with the 2.5-day rereg proposal.

72. At Peachtree Creek (Figure 28), temperatures oscillate near 18.8° C
(66° F) for all simulations, generally staying below this temperature. DO is

high, and dissolved iron and manganese concentrations are low for all
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simulations. The ranges of variation for temperature and DO at Peachtree

Creek in October are less than in July due to warmer Buford Dam releases, less

impact of solar heating, and less photosynthesis.

] Plan B Versus Three Reregulation Options

hv 73. Plan B operations are designed to fill estimated future water sup-
b ply needs for the Atlanta region. These needs entail increased withdrawals
from the Chattahoochee River, additional weekend hydropower releases from
Buford Dam, and daily peaking hydropower releases from Morgan Falls Dam.

L Thus, total releases under Plan B significantly excead MIP releases, and these
*‘. operational differences affect water quality along the study reach.

74. During July (Figure 29), average Plan B water temperatures do not
exceed 18.8° C (66° F), as they do under other simulations, including MIP.
Average DO remains above 5 mg/% while average metal concentrations exceed
& those experienced with rereg alternatives; these concentrations are not high
enough to generate concern.

75. In July, at the trout hatchery intakes (Figure 30), modeled water

temperatures remain well below 18.3° C (65° F). Plan B temperatures cycle
between 9° and 11° C; the higher value equal to the high flow values for the
rereg alternatives; the 600-cfs alternate 1-day water supply low flows drive
temperatures down toward the Plan B lows. Plan B DO concentrations vary be-
tween 6.5 and 7.5 mg/%, generally remaining slightly higher than those of the
rereg options. Although the Plan B simulated dissolved iron and manganese,
concentrations are marginally higher than the others associated with the other
options. All metal concentrations are low in the relatively well-oxygenated
flows from Buford Dam.

- 76. At Peachtree Creek, Plan B water temperatures exceed 18.8° C

' (66° F) during only one daily cycle (on Tuesday), unlike the rereg flows which
tend to remain above 18.8° C (66° F) (Figure 31). DO concentrations in July

remain high during the simulation period, and dissolved metal concentrations

are close to zero.

77. In October, average simulated water temperatures never exceed
18.8° C (66° F); Plan B averages are lowest (Figure 32). Average DO concen-
trations are very low in the area to be impounded by the proposed rereg dam,

with alternate 1-day water supply and Plan B alternatives exhibiting the
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lowest averages (less than 2.0 mg/%) in this sector. Dissolved metal concen-
trations are relatively high in conjunction with the alternate 1-day water
supply and Plan B options.

78. At the trout hatchery (Figure 33), Plan B water temperatures vary
from 11.1° to 13.8° C (52° to 57° F); the other simulations remain around
13.8° C (57° F), with the alternate 1-day water supply option dropping almost
as low as Plan B just prior to generation. Plan B DO concentrations are quite
similar to the others, except for the alternate 1-day water supply option
which tends to have less DO because of its 600-fs minimum flows. Dissolved
iron and manganese concentrations under the Plan B alternative are highest
alternating between 0.8 and 0.3 mg/% dissolved manganese and 1.4 and 0.5 mg/¢
iron.

79. Water temperatures at Peachtree Creek (Figure 34) rarely exceed
18.8 ° C (66° F); Plan B seems to generally exhibit the coolest temperatures.
DO concentrations for Plan B and the other options stay around 9 to 10 mg/%.
Dissolved iron and manganese concentrations are highest with Plan B, but the

overall level is quite low.
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PART VI: CONCLUSIONS

80. Because of the number and variety of figures and simulations pre-
serted, the large amount of information is presented in three tables ad-
dressing major study concerns: temperature, DO, and dissolved metals. These
tables will not substitute for the detailed descriptions which this study's
figures provide. It should be reemphasized that meteorologically stressful
(3T10) conditions are used in generating these results.

81. Another concern investigated in this study is the percent of time
that 18.8° C (66° F) is exceeded at Peachtree Creek by the various alterna-
tives modeled (Table 7). During July, all rereg alternatives exceed this
criterion a majority of the time, as does the MIP. In October, exceedances
occur less frequently, and the alternate 1- and 2.5-day rereg simulations are
comparable to the unreregulated systems in frequency of exceedance of 18.8° C
(66° F).

82. Table 8 qualitatively summarizes simulation results of special
interest. In none of the scenarios modeled does water temperature at Peach-
tree Creek exceed 23.3° C (74° F). Plan B is the only regime which does not
experience temperatures greater than 18.8° C (66° F) on regular basis in July.
DO concentrations in October are lowest under the alternate 1- and 2.5-day
water supply rereg options due to their minimum flow releases of 600 cfs; Plan
B releases from Buford Dam are low in DO (1 mg/f) but reaerate rapidly to
approximately 4 mg/% at the trout hatchery, the same concentration that is
associated with reregulation scenarios. Dissolved metal concentrations are
highest for operations without a rereg dam in place.

83. Several significant conclusions can be drawn from this study.
Foremost is the observation that stream temperatures under the proposed rereg-
ulation conditions would generally be warmer than the proposed unreregulated
conditions; largest temperature differences occur between O-cfs minimum flow
rereg options and unreregulated options with 600-cfs minimum flows; tempera-
ture differences are not as great with rereg options that maintain 600-cf's
minimum flows; the rereg dam itself does not cause water temperatures to
increase significantly, but it does store relatively warm waters released
under high-flow conditions from Buford Dam. Second, rereg operations with
O-cfs minimum flows can improve water quality in terms of increasing DO

concentrations in the rereg pool region and decreasing concentrations of
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dissolved metals. Third, rereg operations with 600-c¢fs minimum flows may

lower temperatures in summer, but they also lower DO and raise dissolved metal

concentrations during fall. Fourth, with respect to effects on water quality,

Eii the size of the rereg pool is not as important as the choice between hydro-

power and nonhydropower structures and their associated flow regimes.

84. Simulated reregulated water temperatures may be nearly 5.0° C

B (9° F) warmer than unreregulated temperatures at Peachtree Creek at the same

P point in time (Figure 31). Discrepancies of this magnitude result in part

1 from phase differences in transient high and low flows as well as from differ-
ent flow volumes. It should be recognized that temperature depends strongly

upon variable ccnditions associated with meteorology and flow regimes at the

three dams. For the stressful (3T10) conditions imposed, the maximum tempera-
tures computed at Peachtree Creek never exceed the 23.3° C (74° F) criterion
required by MAAWRMS. With reregulation, water temperatures frequently exceed
18.8° C (66° F) during stressful (3T10) July conditions, while 18.8° C (66° F)
is rarely exceeded under future conditions without reregulation (Plan B).
Records indicate that stream temperatures exceed 18.8° C (66° F) under exist-
ing conditions.

85. The MAAWRMS (1981) has a maximum temperature criterion of 18.3° C
(65° F) at the trout hatchery water intake. This condition is never exceeded
for any of the simulations and should not be a problem with or without
reregulation.

86. Results indicate that DO will not be a serious problem downstream
of the rereg pool, but it could be a concern in the rereg pool. Although much
less reaeration occurs in the rereg pool relative to the river, nonhydropower
releases from the rereg dam should provide a very substantial amount of reaer-
ation. DO conditions below the rereg dam without hydropower should be at
least as good as present conditions or future conditions without reregulation.
Severely low DO conditions are not expected to exist in the rereg pool during
summer months, but may occur in the fall due to the release of low DO waters
and higher concentrations of oxygen demanding materials.

87. Downstream of the rereg dam, there should be relatively little
difference in dissolved iron and manganese among the various reregulation

alternatives, and these alternatives result in significantly lower dissolved

metal concentrations than conditions without a rereg dam. In the rereg pool,

these metal concentrations should be less with reregulation, assuming that

29




minimum flows from Buford Dam are eliminated (O-cfs minimum flow). October's
600-cfs minimum flow releases allow dissolved iron concentrations to exceed

1 mg/% at the trout hatchery. Of course, the highest concentrations of these
materials occur during the fall when anoxic conditions usually exist in the
hypolimnion of Lake Sidney Lanier.

88. Computed concentrations for other water quality parameters do not
present any reason for concern. The concentrations are quite similar for con-
ditions with and without the rereg dam and generally reflect present concen-
trations in the river. Under present conditions, concentrations of algae are
low (Miller and Jennings 1979, Willey and Huff 1978) and have little impact on
the concentrations of other constituents. These simulations indicate similar
results for all conditions.

89. The following conclusions should be kept in mind when considering
design or operations alternatives:

a. Impacts of water quality in Buford Dam releases can be observed
throughout the study reach.

b. Differences between hydropower and nonhydropower designs for
the proposed rereg dam are more important than pool size in
terms of impact on water quality.

c. Increasing flow throughout the system reduces adverse water
quality conditions.
d. Elimination of minimum flows from Buford Dam improves water

quality in terms of dissolved metals and oxygen, but also
eliminates the coldest water.

90. Maintaining operational flexibility will be important if the deci-
sion is made to construct a rereg dam. When it is feasible, those responsible
for dam operations should consider varying flow regimes during the year to

alleviate or minimize potential water quality problems.
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Table U
Water Quality Boundary Conditions, Buford Dam Releases

Month
Constituent Flow* July October
‘ Temperature, °C low 8.6 10.6
k high 1.1 14.2
Ultimate CBOD, mg/% 2.0 2.0
Organic nitrogen, mg/% low 0.2 0.18
high 0.2 0.24
Ammonia nitrogen, mg/% low 0.13 0.32
high 0.13 0.16
Nitrate nitrogen, mg/% 0.30 0.10
Phosphate phosphorus, mg/% 0.01 0.01
DO, mg/e low 5.0 1.0
high 6.0 3.5
Dissolved manganese, mg/% low 0.1 0.8
’ high 0. 0.3
Dissolved iron, mg/% low 0.2 1.5
high 0.2 0.6
Fecal coliforms, col/100 mg 0 0

* [ow flow = minimum flow (600 cfs); high flow = peaking power flow.
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Table 5
Lateral Inflows

Constituent

Temperature, deg C
July
August
Dissolved Oxygen, mg/%
(July, 100% saturation)
(October, 100% saturation)
Ultimate CBOD, mg/%
Organic nitrogen, mg/%
Ammonia nitrogen, mg/%
Nitrate nitrogen, mg/%
Phosphate phosphorus, mg/%
Fecal coliforms, col/100 mg

Segment 1% Segment 2% Segment 3t
29 29 29
15 15 15

7.7 T.7 7.7
10.1 10.1 10.1
2.0 7.3 20.0
0.2 0.6 2.0
0.1 0.25 1.0
0.4 0.5 0.4
0.2 0.25 1.0
100.0 3,300.0 950,000.0

* Segment 1 extends from Buford Dam to the rereg dam.
%% Segment 2 extends from the rereg dam to Morgan Falls Dam or from Buford

Dam to Mor an Falls Dam.

t Segment 3 extends from Morgan Falls Dam to Peachtree Creek.

Table 6
Rate Coefficients (Base e and 11° C)

Coefficient

Nitrification rate
(ammonia to nitrate)

Algal decay rate

Algal growth rate
Manganese oxidation rate
Iron oxidation rate

CBOD decay rate
Coliform die-off rate
Tsivoglou coefficient

Bottom plant density

Light extinction coefficient

Units

Q £F—- O O © = O O O

.50/day

.05/day

.005 sq m/(watts/day)
.50/day

.0/day

.15/day

.75/day

.05/ft

.10 g/(sq m) above Morgan Falls Dam
.00 g/(sq m) below Morgan Falls Dam

.20/ft
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Table 7

Percent of Time 18.3° C is Exceeded at Peachtree Creek by

Various Alternatives Examined in This Study

Alternative July October
MIP 54 4y
Plan B 7 2
1-day rereg 94 23
2.5-day rereg 87 17
MFSF 96 30
Alternate 1-day rereg T4 1
Alternate 2.5-day rereg 82 2
Table 8
Summary of Results
23.3° C Frequency of Concentration
Exceeded Exceeding 18.8° C DO is a of Fe and Mn
at Peachtree at Peachtree Concern at Trout Hatchery

Simulation Creek, July Creek, July Oct Oct
Modified Interim No High Some High

Plan
Plan B Low High
1 day rereg High Low
2.5 day rereg ‘ Low
Alternate 1 day Yes Moderate

rereg
Morgan Falls Some Low

Steady Flow
Alternate 2.5-day Y ] Yes Moderate

rereg
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comparing effects of basic (0-cfs minimum flow) to

alternate (600-cfs minimum flow) 2.5-day rereg dam
operations, October conditions
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Figure 32. Computed water quality comparing effects of
Plan B with three rereg operation alternatives, aver-
aged over 8-day simulation, October conditions
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Figure 33. Computed water quality at trout hatchery

comparing effects of plan B with three rereg opera-
tion alternatives, October conditions
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Figure 34. Computed water quality at Peachtree Creek
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